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Abstract-In the absence of gravitational effects, threshold values for the onset of convective thermo- 
capillary instability are provided for a ‘floating’ liquid layer open to the ambient air and subjected to 
internal heating along a divider located in a plane midway between two open boundaries. For steady modes 
of instability both the critical Marangoni number and the critical wavenumber are given as functions of 
the pervious and thermal properties of the heated divider. Also provided here are numerical estimates and 

velocity profiles amenable to experimental test under microgravity conditions. 

1. INTRODUCTION 

A PARADIGMATIC case of surface tension-driven con- 
vection is the BCnard instability [l-5] where steady 
cellular convective motions arise in a horizontal liquid 
layer heated from a solid bottom. Indeed, although 
buoyancy and thermocapillary effects can be invoked 
to account for the instability the major cause is the 
Marangoni effect [6, 71, i.e. the surface stresses due to 
the temperature induced non-uniformity of the sur- 
face tension along the open boundary [8, 91. In a 
space-craft, however, the effective gravity may be dras- 
tically reduced thus leading to the relatively higher 
importance of interfacial phenomena over buoyancy. 
Hence the expected possibility of containerless pro- 
cessing of materials in space demands studying all 
possible Marangoni-driven flows [lo]. In the present 
paper we discuss a particular case of such steady insta- 
bility as a result of internal heating along a solid 
‘divider’ located in the plane midway between the two 
open boundaries of a liquid layer ‘floating’ in space. 
The ‘divider’ is assumed to be a thin pervious ‘par- 
tition’ separating the liquid layer in two halves. It 
could be a pervious copper divider, with suitable 
porosity, which may very well serve a grid catalyst 
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for possible exo- or endothermic chemical reactions. 
When convective instability develops, whether or not 
both halves behave as two separate Marangoni- 
BCnard layers crucially depends on the properties of 
the ‘divider’. In Section 2 we state the problem and 
make precise the role of both the permeability and the 
thermal conductivity of the ‘divider’. In Section 3 
we provide threshold conditions for instability and 
velocity profiles in terms of such properties of the 
‘divider’. Our results, amenable to experimental test 
under low/microgravity conditions, provide knowl- 
edge for the potential use of ‘dividers’ in controling 
flows in space. 

2. FORMULATION OF THE PROBLEM 

Let us consider a ‘floating’ liquid layer 
(h < z < -h) with two outer free level surfaces open 
to air (considered passive), at z = h and z = -h, 
respectively. At z = 0, i.e. midway between the two 
open boundaries we insert a pervious ‘divider’, thick- 
ness 2d (d << h), taken as a ‘partition’ which on the 
average is uniformly heated. A similar problem in 
buoyancy-driven Rayleigh-BCnard convection has 
already been considered by earlier authors, both theo- 
retically [ 11, 121 and experimentally [ 13, 141. Dis- 
regarding surface deformability and buoyancy in the 
liquid layer, here we shall consider the result of the 
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NOMENCLATURE 

d half thickness of the 
divider 

h half liquid layer depth 
k horizontal Fourier mode 

M Marangoni number, @hjg~ 

P pressure 
T temperature 
V velocity vector 
z~.~,, c; horizontal and vertical 

velocity components 
L’ dimensionless amplitude of 

the vertical velocity 
component 

x, z horizontal and vertical 
coordinates. 

Greek symbols 
2. 1;. c1,, (Z,, 2,) generic ‘divider’~partition 

resistance, tangential/p~~rallel and 
transverse/normal resistances (quantities 
with tilde are dimensionless) 

?, , surface tension temperature cocficicnt, 
-F*/?T 

A Laplacian operator 

9 dynamic viscosity 

0. 0 dimensionless temperature disturbance 
and dimensional reference temperature 

ti (inverse) Biot number 
IC{, tip liquid and ‘dividcr’,‘partition heat 

conductivities 
1’ kinematic viscosity 
CT surface tension 

II liyuid heat diffusivity. 

- 

~arangoni effect acting at two opposite surface 
boundaries. 

In the quiescent state the temperature profile is 
assumed to be initially linear 

To = 0 x 
i 

(l-z/k) at z>o 
(liz/k) a1 z<o (1) 

with 0 given. Let (r, p, v) denote infinitesimal tem- 
perature, pressure and velocity disturbances. They 
obey the linearized form of the Navier-Stokes, con- 
tinuity and heat transport equations : 

divv = 0 

dT 
:I +v*VT,, = xAT 

(lb) 

(2cj 

where p is the density, v is the ~~n~rn~lt~c viscosity and 
x the heat diffusivity of the liquid. 

At the open boundaries we assume 

z’llIx +,, = 0 (3) 

together with the tangential stress balance. If the sur- 
face tension of the open boundaries depends linearly 
on the temperature 

CT = CJ,, -“,‘T (4) 

with y generally taken positive, then the boundary 
condition (b.c.) is 

where 4 is the dynamic viscosity. The disturbed heat 
flux at both free surfaces is assumed such that : 

At the ‘partition’, of negligible thickness with 
respect to the depth of the liquid, we assume con- 
tinuity of the velocity, with through-flow obeying 
Stokes law, i.e. the tangential velocity component is 
taken proportional to the sum of the tangential 
stresses on both sides of the partition while the normal 
component is taken proportional to the pressure jump 
across it [15]. Thus we have at z = 0 : 

(7a) 

I‘, = IX*,, ‘(P’ -P ) (7b) 

where x, and c(, are phenomenological parameters 
that define the characteristic tangential/parallel and 
no~al/transverse hydrodynamic “resistances’ of the 
‘divider’. Thermally. this ‘partition’ is such that 1161 

r+ = T Pa) 

-ti,.(c?T’,‘Jz-ST -ii%) = ti$iA, T @bl 

with + and - denoting just above and below it, 
respectively; A! = (C?2/dx+C?2/~2), tir and tip the heat 
conductivity of the fluid and the ‘divider’, respectively. 

Now we introduce dimensionless variables using 
suitable UP&S; distance : h ; time : h’/v ; velocity : x,/h : 
partition ‘resistance’ : q/h and temperature: 0. Then 
with these new ‘scales’ we obtain the nondimensional 
form of the equations and boundary conditions. 
‘CJsing the Fourier decomposition ryz = v(z) eii’ and 
T = O(z) e”‘. with primes (‘) denoting z-derivatives 

and restricting consideration to steady modes of insta- 
bility we have : 
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with b.c. 

l atz=O: 

and 

0 atz= 21: 

[v =: 0, -0” = k ivfkze, et = o] UOb) 

with #, = ~“~~~, LX, = ~*~/~ (quantities with tilde ate 
dimensionless), K = drc,/hlcr (inverse) Biot number, 
and A4 = yOh/qX, Marangoni number. 

The solutions of equations (9) and (IO) naturally 
separate into even and odd modes : 

(i) For the eaten solution : u(-z) = u(z), f?( -2) = 
-O(z), with b.c. 

0 atz=O+: 

[J 2: 0, Uftl = - k%,v/2, B = 01, 

and 

l z= +f: 

[v = 0, v” = -Mk28, 8’ = 01. 

(ii> For the odd solution : u( -2) = -v(z), 0(-z) = 
O(z), with b.c. 

l atz=O+: 

[v = 0, VII = a&/2,8’ = k’x%], 

and 

l atz= fl: 

[U = 0, 0“ = - Mk’%, 0’ = 01s 

We clearly see that the Eden solution depends on one 
parameter only, namely E,, while the ~a%i mode 
depends on two parameters, E, and K. 

The generai solution of both problems can be 
written in the region z > 0 as 

v = c, shkz+czchkz-t-c,zchkz+c,zshkz (11) 

and 

0 = c, sh kz + c, ch kz f (c&R2 - c,;2k)z sh kz 

+ (q/4k2 - cl /2k)z ch kz 

-(cgshkz-+c~ehkz)z2J4k (12) 

wheretheci(i= I,..., 6) are constants to be fixed by 
the b.c. 

M 
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FIG. 1. Neutral stability curves (even solution) at fixed values 
of the transverse ‘resistance’ of the divider, En. 

3. THRESHOLD CONDITIONS FOR 

INSTABILITY AND EXPECTED VELOCITY 

PROFILES 

The problem is now reduced ta solving a deter- 
minantal equation that upon separation of the solu- 
tion in its even and odd parts yields : 

(i) even modes 

M = {32k2+8~~(k2t2 i-kt-k”)]/ 

[4(k2-2kt+t2-k2t2+2kt3)+B,(t3/k-k2+k2t2)] 

03) 

with t = tanh k. Asymptotically we have : 

(La) k -+ 0: 

M = [480 _t 800i,k2]/[60k2 f 0i,k4] 

(Lb) k + cc : 

(14a) 

A4 F-Z 8k2. U4b) 

Thus the threshold values correspond to the minima 
of the curves shown in Fig. 1. At E, = 0 we have 
MC = 21 .X and k, = 1.1, while at En = lo4 (practical 
‘infinity’) we have MC = 79.5 and k, = 2.0. The latter 
results for an impervious partition reproduce the fin- 
dings earlier known from ref. [2] for a good conducting 
heater. Figure 2 provides the vertical velocity in the 
upper half layer and related flow profiles as En 
increases from zero to (practical) ‘infinity’. Very much 
like in the case of buoyancy-driven Rayleigh-Binard 
convection [ 1 l] we see the crucial role played by 8, in 
establishing a single cell convective pattern all over 
the two halves of the liquid layer. Indeed, for the even 
solution when Cr, tends to zero the ‘divider’ plays little 
mechanical role. In the opposite case when &, tends 
to infinity the ‘partition’ truly divides the liquid into 
two separate Marangoni-B~nard Iayers. For com- 
pleteness, Fig. 3 depicts the expected vertical velocity 
component at vanishing G, for various values of the 
wavenumber at neutral stability conditions. 
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FIG. 2. Even solution : (a) vertical velocity component of the 
expected flow at threshold for several values of the transverse 
‘resistance’ of the divider TV,, and qualitative sketch of the 
corresponding flow profiles: (b) for E, = 0, (c) for %, = 30. 
and (d) for 5” = IO“. Note that at large enough values of the 
‘resistance’ the divider strictly splits the layer in two halves. 

(ii) odd modes 

A4 = [16k*t3$-48,(k’r’+kt’-k’t)+ 16&tz 

+4oi,~(k’2’+k’t-k’)]/[2(t’-k’ti_k’t3) 

+0,5o7,(k+t’lk-2t+2t3-k’t+k’t~-kr’) 

+2K-(2k3t2-k’t3+k2t-2k’+kt’) 

+0.50i_ti(l’+kit2-k3~l. , \ II 
(151 
\ -,’ 

1.0 

12 34 

Y os- 
l- 0.3 = k 
2- 1.0 
3- 2.0 
4- 3.0 

0 0.5 1.0 

FlG. 3. hen SOhtiOn : Vertid Velocity COmpOnent Of neutrcr/ 
disturbances for vanishing ?,,. Values of k correspond to 

critical values at threshold. 

Asymptotically we have : 

(ii.a) k = 0: 

M = [288+486,+288~+48oi,ti]/[l2+E~] 

(16a) 

(ii.b) k -+ x : 

A4 z [16k’+48,k+16K-ki+4~,lik’]i 

[2+0.55,,‘k+2tik+OSd,K]. (16b) 

The threshold values correspond to the minima 01 
the curves shown in Fig. 4: which, for illustration. 
correspond to K = 0, K = 1 and ti = 5. respectively. 

For ti = 0, at 2, = 0 we have M, = 24 and k, = 0. 

while at & = IO4 (practical ‘infinity’) we have MC = 48 

and k, = 0. The latter results for a poor rigid COW 

ductiny ‘divider’ reproduce the findings also known 
from ref. [2]. When K does not vanish. e.g. K = 5 the 
threshold values do not correspond to a vanishing 
wave number and are: at ric, = 0 : M, = 54.8 with 
k, = 1.6 and at 6, = IO4 (practical ‘infinity’): 
M, = 77.8 with k, = 1.9. Figure 5 depicts the pre- 
dicted vertical velocity component for the o&l 

5-.- 3_ 100 
4- 10000 

I I 1 
I 2 3 

k 

FIG. 4. Neutral stability curves (o&l solution) at fixed values 
of the parallel ‘resistance’ of the divider, E,, and different 

values of the (Inverse) Blot number, ti 
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FIG. 5. Odd solution: vertical component of the expected 
flow at threshold for several values of the parallel ‘resistance’ 

of the divider, E,, and vanishing heat conductivity. 

solution. It clearly shows that at variance with the 
men mode for the odd mode both halves develop 
separate convection cells as it may intuitively be 
guessed. On the other hand for the latter case it 
appears that the flow pattern shows only a slight 
dependence on the (inverse) Biot number K. Both 
even and odd convective modes show velocity profiles 
strongly dependent on the corresponding ‘resistance’. 
For small values of &Z,, i.e. in the case of a good 
‘permeability’ of the ‘divider’ we see that the two 
initially unrelated Marangoni-driven instabilities 
yield flows that merge the two expected steady cell 
patterns into a single convective structure. In the 
opposite extreme case, a rigid partition merely yields 
the usual Marangoni-Benard convection [2] in the 
two halves. 

4. CONCLUSION 

The steady Marangoni-Benard convective insta- 
bility of a ‘floating’ liquid layer heated at a pervious 
to through-flow divider located midway between its 
two open surfaces has been considered. We have 
shown how, in the absence of gravity, the threshold for 
instability drastically depends on the mechanical 
characteristics of this partition as well as on its heat 
transfer properties. The solution of the boundary 
value problem for neutraldisturbances naturally splits 
into even and odd modes. For the even solution there 
is a critical Marangoni number that depends only on 
the partition’s transverse hydrodynamic ‘resistance’, 
LZ,. For the odd solution the critical Marangoni num- 
ber depends on two parameters, the tangential ‘resist- 
ance of the divider, k,, and its (inverse) Biot number K. 

Comparison between the expected behavior of even 
and odd modes of convective instability is illustrated 
in Fig. 6. For the particular case of vanishing (inverse) 
Biot number, JC = 0, it appears that in the long wave 
region odd disturbances have a lower threshold while 
in the short wave region, for small ‘resistance’ values, 
the even modes are more dangerous. Note that for 

I I I 
1 2 3 

k 

FIG. 6. Neutral curves (even and odd disturbances) at van- 
ishing K. Solid line portions denote the lower threshold, most 
dangerous instability mode at equal transverse and parallel 

‘resistances’, d, = 5,. 

even modes, under appropriate conditions the two 
halves of the layer behave like a single convective cell 
while otherwise both halves may convect in a rather 
unrelated way. Overall, for large enough values of the 
‘resistances’, h, and k,, the odd modes are the most 
dangerous. From the behavior of all neutral stability 
curves at vanishing wavelengths it can be shown 
that all critical Marangoni numbers, M,, asymptote 
to 8k2. 

Figure 7 depicts the dependence of the critical 
Marangoni number, MC, with the corresponding 
hydrodynamic ‘resistance’ of the ‘divider’/partition, 
~1: for even modes-curve # l--cc 3 o?,, and for odd 
modes--curves # 2%&cr = oi,. There is a rapid vari- 
ation of A4, in the region 1 < tl < 100. The measure- 
ment of the hydrodynamical ‘resistances’ of the par- 
tition [14] shows that the upper value of this interval 
fits well with a ‘divider’ with not so ‘small’ holes. Even 
though such partition suppresses through-flow yet it 
allows for molecular diffusion from one half to the 
other in the liquid layer. 

FIG. 7. Semilog plot (using the appropriate ‘resistance’ a: 
for even modes+urve # 1-a = E,, and for odd modes- 
curves #2&a = oi,) of the minimal values of the critical 
Marangoni numbers at different values of the (inverse) Biot 

number, K. 
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In conclusion, we can say that in view of the drastic 
influence of the partition on the expected Marangoni-~ 
BCnard flows, the use of a heated pervious ‘divider’, ‘. 
e.g. as a grid catalyst or some other device. shows 

potential usefulness to control flows in microgrrrcitj~ 

conditions. 9. 
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